首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   423篇
  免费   47篇
  国内免费   121篇
测绘学   2篇
大气科学   1篇
地球物理   114篇
地质学   418篇
海洋学   18篇
天文学   1篇
综合类   25篇
自然地理   12篇
  2023年   7篇
  2022年   32篇
  2021年   5篇
  2020年   6篇
  2019年   12篇
  2018年   10篇
  2017年   28篇
  2016年   22篇
  2015年   45篇
  2014年   28篇
  2013年   31篇
  2012年   15篇
  2011年   22篇
  2010年   20篇
  2009年   28篇
  2008年   19篇
  2007年   41篇
  2006年   33篇
  2005年   13篇
  2004年   21篇
  2003年   16篇
  2002年   15篇
  2001年   8篇
  2000年   13篇
  1999年   15篇
  1998年   7篇
  1997年   9篇
  1996年   6篇
  1995年   10篇
  1994年   12篇
  1993年   12篇
  1992年   5篇
  1991年   5篇
  1990年   4篇
  1989年   5篇
  1988年   5篇
  1987年   2篇
  1986年   1篇
  1984年   2篇
  1979年   1篇
排序方式: 共有591条查询结果,搜索用时 15 毫秒
1.
沂水崔家峪玻璃用石英砂岩矿床赋存于早寒武世李官组砂岩段中.呈近水平的层状产出。因其岩石坚硬.矿体呈环山的平台状分布。矿体厚度大,矿石品级高,特级品矿石二氧化硅平均含量98.47%,铁杂质平均含量0.043%(选矿后,铁杂质含量可降至0.02%以下),为一优质玻璃硅质原料矿床。矿石为细一中粒石英砂岩,粒度以中粒为主,矿石由碎屑颗粒和胶结物组成,碎屑成分含量为97%~98%.其中绝大部分是石英颗粒.具典型的砂屑结掏。该矿床属滨海陆源沉积矿床。  相似文献   
2.
The auriferous veins at Jinniushan occurs within the Jinniushan faulted zone in the Kunyushan Granite. Optical observation reveals that gold ore body formed during the main stage of hydrothermal activity. Detailed geothermometric studies of fluid inclusions from the veins show that the forming temperature ranges between 130℃ and 370℃ and the salinity is from 4.01 to 15.21 wvt percent NaCl. The ore-forming fluid is featured by low to moderate salinity, and low to moderate temperature. According to investigations of the values of vapor/liquid and temperatures of the ore-forming fluids, we propose that the boiling fluid inclusions exist in the main mineralization stages. Fluid boiling is suggested as a mechanism for the precipitation of gold from the hydrothermal fluid in the Jinniushan gold deposit.  相似文献   
3.
Quartz‐rich veins in metapelitic schists of the Sanandaj‐Sirjan belt, Hamadan region, Iran, commonly contain two Al2SiO5 polymorphs, and, more rarely, three coexisting Al2SiO5 polymorphs. In most andalusite and sillimanite schists, the types of polymorphs in veins correlate with Al2SiO5 polymorph(s) in the host rocks, although vein polymorphs are texturally and compositionally distinct from those in adjacent host rocks; e.g. vein andalusite is enriched in Fe2O3 relative to host rock andalusite. Low‐grade rocks contain andalusite + quartz veins, medium‐grade rocks contain andalusite + sillimanite + quartz ± plagioclase veins, and high‐grade rocks contain sillimanite + quartz + plagioclase veins/leucosomes. Although most andalusite and sillimanite‐bearing veins occur in host rocks that also contain Al2SiO5, kyanite‐quartz veins crosscut rocks that lack Al2SiO5 (e.g. staurolite schist, granite). A quartz vein containing andalusite + kyanite + sillimanite + staurolite + muscovite occurs in andalusite–sillimanite host rocks. Textural relationships in this vein indicate the crystallization sequence andalusite to kyanite to sillimanite. This crystallization sequence conflicts with the observation that kyanite‐quartz veins post‐date andalusite–sillimanite veins and at least one intrusive phase of a granite that produced a low‐pressure–high‐temperature contact aureole; these relationships imply a sequence of andalusite to sillimanite to kyanite. Varying crystallization sequences for rocks in a largely coherent metamorphic belt can be explained by P–T paths of different rocks passing near (slightly above, slightly below) the Al2SiO5 triple point, and by overprinting of multiple metamorphic events in a terrane that evolved from a continental arc to a collisional orogen.  相似文献   
4.
江西省武功山地区浒坑钨矿床的Re-Os年龄及其地质意义   总被引:2,自引:0,他引:2  
刘珺 《地质学报》2008,82(11):1572-1579
浒坑钨矿床是位于江西省中部武功山成矿带的大型石英脉型黑钨矿床。为了确定该矿床的成矿时代,笔者选取了浒坑含钨石英脉中与黑钨矿共生的辉钼矿进行了高精度Re-Os同位素定年,并获得5个辉钼矿样品的Re-Os等时线年龄和模式加权平均年龄分别为150.2±2.2Ma和149.82±0.92Ma。测年数据表明浒坑钨矿床的成矿时代为150Ma左右,是华南地区中生代大规模成岩成矿作用高峰期的产物。辉钼矿含铼较低,表明成矿物质可能来自壳源,与形成浒坑花岗岩体的燕山期重熔S型花岗岩岩浆活动有关。该矿床形成于燕山期岩石圈伸展减薄环境。  相似文献   
5.
Supergene nickel deposits of New Caledonia that have been formed in the Neogene by weathering of obducted ultramafic rocks are controlled by fracture development. The relationship of tropical weathering and tectonic structures, faults and tension gashes, have been investigated in order to determine whether fractures play a passive role only, as previously thought; or alternatively, if brittle tectonics was acting together with alteration. Observation of time‐relationship, textures, and mineralogy of various fracture fills and fault gouges shows that active faulting has played a prominent role not only in facilitating drainage and providing room for synkinematic crystallization of supergene nickel silicate, but also in mobilizing already formed sparse nickel ore, producing the very high grade ore nicknamed “green gold”.  相似文献   
6.
合龙钨矿床位于南岭东西向构造岩浆带与北-北东向于山构造带交汇部位,是南岭东段于都-赣县矿集区的重要组成。合龙钨矿床是赣南地区近年在石英脉型钨矿勘查取得最重要突破的矿区,新发现钨多金属矿体达48条,新探明黑钨矿资源量3.5万余吨,WO_3平均品位2.189%,深部具有大型以上资源潜力。合龙钨矿床以外带石英大脉型矿体与岩体内石英细脉-云英岩型钨矿体分带共生为特色,区别于经典的石英脉型钨矿床的"五层楼"分带,也不同于"西华山式"仅岩体内成矿和"盘古山式"的仅岩体外成矿,故对其开展成岩成矿时差研究、内外带成矿过程对比研究和成矿模式研究具有重要意义。本文在矿床地质工作基础之上,对该矿床进行了较详细的矿物学研究,对比了不同阶段、不同分带黑钨矿和白钨矿的矿物化学特征;应用LA-ICP-MS锆石U-Pb法获得深部隐伏中细粒斑状黑云母花岗岩的成岩年龄为159.0Ma;应用辉钼矿Re-Os等时线法,测定了内带石英脉-云英岩型矿体成矿时代为157.3Ma,外带石英脉型矿体成矿时代为159.6Ma。研究表明,合龙钨矿床形成于燕山早期,是华南东部中生代大规模花岗质岩浆活动与钨多金属成矿作用的产物,其成矿作用紧随花岗质岩浆侵入而发生,成岩与成矿时间基本一致。内脉带矿化略晚于外脉带钨矿化,外脉带黑钨矿以相对高温阶段形成的含锰钨铁矿为主,内脉带黑钨矿则以成矿作用中晚期的含铁钨锰矿为主。基于上述研究成果,本文建立了"合龙式"钨矿床成矿模式,对石英脉-云英岩型钨矿成矿理论研究具有一定的推动作用,对下一步勘查工作部署具有重要实践意义。  相似文献   
7.
The behaviour of quartz during metamorphism is studied based on two case studies from the Barrovian terrains of Sulitjelma in arctic Scandinavia and Loch Tay in the Central Highlands Dalradian of Scotland. Both terrains preserve evidence for metamorphism in pelites involving nucleation and growth of garnet at different times in the deformation history. Data are presented on the size, shape and crystallographic orientation of quartz preserved as inclusions in garnet and as grains in the surrounding matrix. While quartz-grains remain small and dispersed between mica grains, deformation appears to be dominated by grain-boundary sliding accommodated by dissolution–precipitation. At amphibolite facies, textural coarsening occurs by dissolution of small quartz grains and growth of larger quartz grains, coupled with segregation of quartz from mica. As a result, quartz deforms by dislocation creep, developing crystallographic preferred orientations (CPO) consistent with both coaxial and non-coaxial strain. Quartz CPOs with <0001> axes lying parallel to foliation and stretching direction are commonly developed, and best explained by mechanical rotation of inequant (detrital?) quartz grains. There is no evidence for selective entrapment of quartz inclusions in garnet on the basis of quartz crystallographic orientation.  相似文献   
8.
A combined study of chronometric dating and oxygen isotope analysis for minerals from vein and host eclogite as well as regional country-rock gneiss in the Dabie orogen provides a direct constraint on timing of fluid flow in this orogen formed by continental collision. Oxygen isotope ratios of vein minerals are significantly lower than those of the host eclogite, but comparable with those of the regional gneiss. This suggests the veining fluid came from the regional gneiss (i.e. exhumed slab itself) rather than the host eclogite. While zircon U–Pb and phengite Ar–Ar dating yields ages of 214 to 222 Ma for the eclogite and gneiss, the vein gives a quartz–muscovite Rb–Sr isochron age of 181 Ma and a muscovite K–Ar age of 179 Ma. Thus the veining postdates the Triassic ultrahigh pressure metamorphic event, witnessing postcollisional fluid flow after the orogenic cycle of continental collision.  相似文献   
9.
The formation of late‐stage veins can yield valuable information about the movement and composition of fluids during uplift and exhumation of high‐pressure terranes. Albite veins are especially suited to this purpose because they are ubiquitously associated with the greenschist facies overprint in high‐pressure rocks. Albite veins in retrogressed metabasic rocks from high‐pressure ophiolitic units of Alpine Corsica (France) are nearly monomineralic, and have distinct alteration haloes composed of actinolite + epidote + chlorite + albite. Estimated PT conditions of albite vein formation are 478 ± 31 °C and 0.37 ± 0.14 GPa. The PT estimates and petrographic constraints indicate that the albite veins formed after the regional greenschist facies retrogression, in response to continued decompression and exhumation of the terrane. Stable isotope geochemistry of the albite veins, their associated alteration haloes and unaltered hostrocks indicates that the vein‐forming fluid was derived from the ophiolite units and probably from the metabasalts within each ophiolite slice. That the vein‐forming fluid was locally derived means that a viable source of fluid to form the veins was retained in the rocks during high‐pressure metamorphism, indicating that the rocks did not completely dehydrate. This conclusion is supported by the observation of abundant lawsonite at the highest metamorphic grades. Fluids were liberated during retrogression via decompression dehydration reactions such as those that break down hydrous high‐pressure minerals like lawsonite. Albite precipitation into veins is sensitive to the solubility and speciation of Al, which is more pressure sensitive than other factors which might influence albite vein formation such as silica saturation or Na:K fluid ratios. Hydraulic fracturing in response to fluid generation during decompression was probably the main mechanism of vein formation. The associated pressure decrease with fracturing and fluid decompression may also have been sufficient to change the solubility of Al and drive albite precipitation in fracture systems.  相似文献   
10.
Large pyroclastic rhyolites are snapshots of evolving magma bodies, and preserved in their eruptive pyroclasts is a record of evolution up to the time of eruption. Here we focus on the conditions and processes in the Oruanui magma that erupted at 26.5 ka from Taupo Volcano, New Zealand. The 530 km3 (void-free) of material erupted in the Oruanui event is comparable in size to the Bishop Tuff in California, but differs in that rhyolitic pumice and glass compositions, although variable, did not change systematically with eruption order. We measured the concentrations of H2O, CO2 and major and trace elements in zoned phenocrysts and melt inclusions from individual pumice clasts covering the range from early to late erupted units. We also used cathodoluminescence imaging to infer growth histories of quartz phenocrysts. For quartz-hosted inclusions, we studied both fully enclosed melt inclusions and reentrants (connecting to host melt through a small opening). The textures and compositions of inclusions and phenocrysts reflect complex pre-eruptive processes of incomplete assimilation/partial melting, crystallization differentiation, magma mixing and gas saturation. ‘Restitic’ quartz occurs in seven of eight pumice clasts studied. Variations in dissolved H2O and CO2 in quartz-hosted melt inclusions reflect gas saturation in the Oruanui magma and crystallization depths of ∼3.5–7 km. Based on variations of dissolved H2O and CO2 in reentrants, the amount of exsolved gas at the beginning of eruption increased with depth, corresponding to decreasing density with depth. Pre-eruptive mixing of magma with varying gas content implies variations in magma bulk density that would have driven convective mixing. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号